QUESTION BANK 2016 SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583 **QUESTION BANK (DESCRIPTIVE)** Subject with Code : FM(15A01305) Course & Branch: B.Tech - CE Year & Sem: II-B. Tech & I-Sem **Regulation:** R15 UNIT –I Introduction to Fluid Mechanics and Hydrostatic Forces on Surfaces 1. a) State Pascal's law. What do you understand by the terms Absolute, Gauge, atmospheric & Vacuum pressure. 5M b) What is the gauge pressure at a point 3m below the free surface of a liquid having a density of $1.53 \times 10^3 \text{ kg/m}^3$. If the atmospheric pressure is equivalent to 750mm of mercury? The Specific gravity of mercury is 13.6 and density of water = 1000 kg/m^3 5M 2. Define Manometer. Briefly explain the types of manometers in detail. 10M 3. a) A simple U – tube manometer containing mercury is connected to a pipe in which a fluid of specific gravity 0.8 and having vacuum pressure is flowing. The other end of the manometer is open to atmosphere. Find the pressure of fluid in the pipe if the difference of mercury level in the two limbs is 20 cm. 5M b) A single column manometer is connected to a pipe containing a liquid of specific gravity 0.9 as shown in fig. Find the pressure in the pipe if the area of the reservoir is 100 times the area of the tube for the manometer reading shown in fig. The specific gravity of mercury is 13.6. 5M

4. a) An inverted U – tube manometer is connected to two horizontal pipes A and B though which water is flowing. The vertical distance between the axes of these pipes is 30 cm. When an oil of specific gravity 0.8 is used as a gauge fluid, the vertical heights of water columns in the two limbs of the inverted manometer (when measured from the respective centre lines of the pipes) are found to be same and equal to 35 cm. Determine the difference of pressure between the pipes.
5M

Name of the Subject

QUESTION BANK 2016

	b) A 15 cm diameter vertical cylinder rotates concentrically inside another cylinder of diameter 15.10 cm. Both cylinders are 25 cm high. The space between the cylinders is filled with a liquid whose viscosity is unknown. If a torque of 12.0 Nm is required to rotate the inner cylinder at 100 r.p.m, determine the viscosity of the fluid.	5M
5.	a) Define Hydro static law and derive the condition for pressure head	5M
	b) Derive the codition for pressue in vertical single column manometer.	5M
6.	Derive expressions for the total pressure and centre of pressure for an inclined plane	
	surface submerge in the liquid.	10M
7.	Explain how you would find the resultant pressure on a curved surface immersed in	
	the liquid.	10M
8.	Define centre of pressure and derive an expression for centre of pressure for a	
	vertically submerged surface.	10M
9.	A cylinder having 3m diameter and 1.5 m length is resting on the floor on one side,	
	water is filled up to half the depth while on the other side oil of relative density 0.8	
	filled up to the top. If the weight of the cylinder is 33.75 kN, determine the	
	magnitudes of the horizontal and vertical components of the force which will keep the	
	cylinder just touching the floor.	10M
10.	a) Define specific density and specific weight.	2M
	b) What is dynamic viscosity of fluid and derive the condition for it.	2M
	c) State absolute, gauge, atmospheric and vacuum pressue.	2M
	d) What is vapour pressure?	2M
	e) Define cavitation.	2M

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (OBJECTIVE)

Subject with Code : FM (15A01305)

Year & Sem: II-B.Tech & I-Sem

Course & Branch: B.Tech - CE **Regulation:** R15

<u>UNIT – I</u>

Introduction to Fluid Mechanics and Hydrostatic Forces on Surfaces

1. The force per unit area is called

]

[

Name of the Subject

		QUES	TION BANK 2	016
A) Pressure	B) Strain	C) Surface tension	D) none	
2. The pressureas	the depth of the liqu	id increases	[]
A) Increases	B) Decreases	C) Remain constant	D) None	
3. The simplest form of man	ometer which can be u	used for measuring moderate	e pressures of liq	uid is
			[]
A) Piezometer B) Dif	ferential manometer	C) U-tube manometer	D) None	
4. Which of the following is	a mechanical guage		[]
A) Diaphragm guage	B) Dead weight press	are C) Bourdon tube pre	essure D) All of t	he above
5. The devices used for meas	suring the pressure at a	point in a fluid by balancir	ng the column flu	iid by
the same or another colum	n liquid are known as		[]
A) Mechanical gauges	B) Manometers	C) U-Tube manometer	D) None	
6. Which of the following is	a possibility of dam f	ailure	[]
A) Failure due to sliding	along its base	B) Failure due to tension	or compression	
C) Failure due to shear a	t the weakest section	D) All of the above		
7. The surface tension is du	e to		[]
A) Cohesion and Adhe	sion B) Cohesion of	nly C) Adhesion only D)	None of the abo	ve
8. Cavitation is caused by			[]
A) High velocity	B) Low pressure	C) High pressure D)	High temperatur	e
9. Centre of pressure (h) in c	ase of inclined immer	sed surface is given by	[]
A) h=I _G sin $\Theta/Ax + x$	B) h=I _G sin $\Theta/A^2x + x$	C) h= $I_G^2 \sin \Theta / Ax + x$	D) $h = I_G sin^2$	⊖/Ax + x
10. Total force on a curved	surface is given by		[]
A) $p = (p_h^2 + p_v^2)^{3/2}$	B)p= $(p_{h}^{2}+p_{v}^{2})^{1/2}$	C) $p=(p_{h}^{2}+p_{v}^{2})^{5/2}$	D)p=p _h +p _v	
11. The ideal fluid is defined	as the fluid which is		[]
A) is compressible B) is incompressible C) is incompressible and non-viscous D) Real fluid				
12. A Newtonian fluid is def	ined as the fluid which	1	[]
Name of the Subject			F	Page 1

QUESTION BANK 2016 A) is incompressible and non-viscous B) obey Newton's law of viscosity C) is highly voscous D) is compressible and viscous 13. Kinematic viscosity is defined as equal to 1 ſ A) Dynamic viscosity x density B) dynamic viscosity /density C) Dynamic viscosity x pressure D) pressure x density 14. The dimensions of dynamic viscosity is 1 ſ A) MLT⁻² B) $ML^{-1}T^{-1}$ C) $ML^{-1}T^{-2}$ D) $M^{-1}L^{-1}T^{-1}$ 15. Poise is the unit of] [A) Mass density B) Kinematic viscosity C) Viscosity D) Velocity gradient 16. Stoke is the units of Γ 1 A) Surface tension B) Viscosity C) Kinematic viscosity D) Velocity gradient 17. Pascel's law states that pressure at a point is equal in all directions 1 A) In a liquid at rest B) In a fluid at rest C) In a laminar flow D) In a turbulent flow 18. The hydrostatic law states that rate of increase of pressure in a vertical direction is equal to ſ 1 B) Specific weight of fluid A) Density of fluid C) weight of fluid D) None of the above 19. Guage pressure at a point is equal to 1 ſ A) Absolute pressure plus atmospheric pressure B) Absolute pressure minus atmospheric pressure C) Vacuum pressure plus absolute pressure D) None of the above 20. Atmospheric pressure held in terms of water column is ſ 1 A) 705 m B) 8.5 m C) 9.81 m D) 10.3 m 21. The resultant hydrostatic pressure acts through a point known as 1 A) Centre of gravity C) Centre of pressure D) None of an bove B) Centre of buoyancy 22. Which of the following denotes the effect of compressibility in fluid flow 1 ſ D) Reynolds number A) Euler number B) Mach number C) Weber number Name of the Subject Page 1

QUESTION BANK 2016

23. The fluid in which the shearing stress within it is proportional to the velocity gradient across the					oss the
sheared section, is called	la			[]
A) Binghim	B) Newtonian	C) Perfect	D) None of the	hese	
24. The ratio of average fluid velocity to the maximum velocity in case of laminar flow of a					
Newtonion fluidin a cir	cular pipe is			[]
A) 2	B) 0.5	C) 1	D) 0.0	56	
25. If the change in density	occurs at constant ten	perature then the proc	ess is	[]
A) Isothermal process	B) Adiabatic process	C) Insulation	process D) va	apour	r pressure
26. If the change in density	occurs with no exchang	ge of temperature then	the process is	[]
A) Isothermal process	B) Adiabatic process	C) Insulation	n process D) va	apour	r pressure
27. If the temperature of liqu	uid is increase then the	viscosity of liquid is		[]
A) Increases	B) Constant	C) Proportional	D) Decreases	5	
28. The density of mercury	is			[]
A) 13600 kg/m ³	B) 13400 kg/m ³	C) 12600 kg/m ³	D) 11600 kg/	m ³	
29. The relation be the speci	ific volume and specifi	c density is		[]
A) Equal	B) Proportional	C) Constant	D) Reciproca	ıl	
30. A fluid which possesses	viscosity is known as			[]
A) Ideal fluid	B) Newtonian fluid	C) Real fluid	D) Ideal plas	tic flu	uid
31. The formula for calculat	ing the pressure in case	e of surface tension on	a liquid jet is	[]
A) P=4*σ/L	B) P=2*σ/L	C) P=8*o/L	D) P=	=σ/L	
32. The angle of contact bet	ween liquid and glass t	ube for capillary fall is		[]
A) 128 ⁰	B) 120 ⁰	C) 240 ⁰	D) 14	0^{0}	
33. The rate of increase in p	ressure in a vertical do	wnward direction is eq	ual to the spec	ific w	eight
				[]
A) Pascel's law	B) Constitutive law	C) Column law	D) Hy	ydros	tatic law
34. The pressure which is m	easure with reference t	o absolute vacuum pre	ssure is	l	J
A) Absolute pressure	B) Guage pressure	C) Vacuum pressure	D) None of the	hese	1
55. The point of application	of total pressure on a l	iquia surface is		Ĺ]
Name of the Subject					Page 1

		QUESTION BANK 2016		
A) Tota pressure	B) Centre of pressure C) Surface tension	D) Viscosity		
36. The total pressure on a	curved surface is	[]		
A) $F = \sqrt{Fx + Fy}$	B) $F=\sqrt{FX2 + FY}$ C) $F^2=FX^2+FY^2$	D) $F=\sqrt{FX + FY2}$		
37. Difference between atmospheric pressure and absolute pressure is called [
A) Vacuum pressure	B) Absolute pressure C) Guage pressure	D) Intensity of pressure		
38. The sum atmospheric p	pressure and absolute pressure is called	[]		
A) Vacuum pressure	B) Absolute pressure C) Guage pressure	D) Intensity of pressure		
39. Inclined single column	manometer is useful for the measurement of	[]		
A) Pressure in tube	B) Pressure in manometer C) Prssure i	n free end D) None of these		
40. Any pressure measure	d above the absolute zero of pressure is terme	ed as []		
A) Guage pressure B) Intensity of pressure C) Atmospheric pressure D)Vacuum pressure				

Prepared by: M. Muzaffar Ahmed and Y. Guru Prasad